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Abstract-The paper presents an extension to unilateral problems of the classical method of bounding (above
and below) the solutions of linear self-adjoint boundary value problems, Using this extension the solution of the
general unilateral problem in linear elasticity is bounded in energy by two suitable defined admissible states
belonging to two complementary convex sets,

1. INTRODUCTION

The aim of this paper is to show how some classical methods previously used to bound the energy
of solutions to linear self-adjoint boundary value problems may be extended to problems with
unilateral constraints.

For such problems, which arise, for instance, in many different parts of mechanics, the
question of existence, uniqueness and continuous dependence of the solution on the data have
already been rigorously treated by means of the theory of variational inequalities (see, e.g. Lious
and Stampacchia [9]). However, in linear problems at least, it is also of some importance to obtain
approximations to the solutions. This has usually be done in the bilateral case by bounding some
mean quantities of the solution, like the energy, and then using Green's function to obtain
pointwise estimates for the solution itself.

The classical techniques essentially derive from a dual interpretation of the minimum
principles in the variational calculus as noted by Friedrichs[l]. Later, Diaz and Greenberg[2],
Diaz [3], Prager and Synge [4], and Synge [5, 6], systematically extended Friedrichs' analysis to
linear elastostatic problems. The solution is equivalent to determining the unique point of
intersection of two linear orthogonal subspaces corresponding to the class of kinematically
possible configurations and the class of equilibrium configuration, respectively. By choosing two
arbitrary elements separately located in each subspace, it is possible to find upper and lower
bounds on the strain energy. When a fundamental solution is known, it is also possible to
determine pointwise bounds on the elastic displacement and its gradients (see Synge [6]).

As regards unilateral problems, where these can be expressed by a variational inequality,
Velte [7] has shown that the classical techniques can be simply extended to obtain bounds for the
solutions. Now, however the solution is determined by the point of intersection of two convex
subspaces, which are not necessarily uniquely defined. Nevertheless for the sake of uniformity
with the bilateral problem, in what follows, we shall continue to associate the elements in these
subspaces with the kinematical and equilibrium conditions of the problem. We shall see that such
conditions are no longer governed by equations, but rather by equations and inequalities.
Moreover, the convex subspaces are not orthogonal. Apart from these features, the general
procedure for finding bounds is the same as in the bilateral problems. We construct elements in
both convex subspaces to bound the energy and then use two singular states together with Betti's
theorem to obtain pointwise bounds on the solution.

The paper consists of three parts. The first describes the existence analysis and also the
decomposition of the boundary value problem into the two complementary convex subspaces. In
the second part, approximations are found for the strain energy and for the solutions at a point.
The last part contains two applications of the general results.

2. NOT ATION AND DEFINITIONS

Let K(B) denote the reference configuration of an elastic body which is also taken to be a
natural state. The region K(B) is an open, connected, and bounded set of three-dimensional
euclidean space, whose boundary iJK(B) is piecewise regular.t Let X denote the place of each
particle of the body in K(B) and let the state of deformation with respect to K(B) be described by

tThat is, decomposable into a finite number of non-overlapping differentiable surfaces.
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the displacement vector field u(X). The tensor field

(2.1)

where Vu is the displacement gradient, represents the infinitesimal strain.
We shall assume throughout that the displacement and the strain are infinititesimal so that all

the conditions of the classical linear theory of elasticity hold. In particular the stress, denoted by
the symmetric tensor field T, is related to the linear strain through the expression

where L is the elastic tensor. We suppose that L is symmetric in the sense that

L ijkl = L jikl = L ijlk

(2.2)

(2.3)

for components Lijkl of L with respect to a given orthonormal base, and moreover that the
additional condition

L ijk/= L klii (2.4)

is satisfied. It is known[8] that (2.4) ensures the existence of a stored energy function.
We suppose that a body force field pb is assigned in IC(B), while on part J11C(B) of the

boundary the displacement u is prescribed and the traction tis given on the remainder, JzlC(B).
Thus, corresponding to the given data, the elastic state consists of the fields g;;;;; [u, E, T]

which are the solution of the boundary value problem:

divT+pb=O in K(B). }

u=u on J'IC(B), (2.5)

Tn=1 on JzlC(B).

where n is the unit outwards normal on JzlC(B).
When J11C(B) is empty, the external loads must satisfy the conditions of global equilibrium:

f Pbdv+f Ids=O,
K(B) a"dB)

f rXpbdv +f rxtds =0,
K(B) dIC(B)

(2.6)

(2.7)

where r = X- 0 and 0 is a fixed point. In this case the following normalization conditions must
be imposed:

f udv =f rxudv =0,
",(B) ",(B)

(2.8)

to exclude arbitrary rigid body motions.
The system (2.5) describes the basic boundary value problem of mixed type of classical

elastostatic. Since the components of the elastic tensor satisfy the symmetry condition (2.4), the
governing differential operator is formally selfadjoint.

In the numerical treatement of problems, or in discussing a priori estimates on the solutions,
it is often convenient to formulate problem (2.5) in terms of variational principles. Many of these
results are needed in the extension to unilateral problems of similar techniques, therefore we
shall briefly sketch the main steps of the development leading to them.

We consider first the set of the kinematically admissible elastic states, satisfying the
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displacement-deformations, the stress-deformation relations, and the displacements boundary
conditions.

We denote these states by ::I' == [u', E', T'] and observe that they can be regarded as elements
of a Hilbert space endowed with the (symmetric) scalar product

«(::I', ::I'» =f tr(T'E') dv =f tr{L[E']E'} dv.
,,(B) ,,(B)

(2.9)

The admissible states ::I' describe a certain linear manifold 5£', which we will call the manifold of
kinematically admissible configurations. We can decompose ::I' into the sum

::I' = ::I~ + fl' , (2.10)

where ::I~ is fixed element satisfying the non-homogeneous boundary conditions on a.IC(B) and
fl' is a variable element vanishing on allC(B).

Similarly, we will denote by ::I" == [u", E", T"] the statically admissible states which satisfy the
equilibrium equations, the stress-deformation relations, and the traction boundary conditions.

The states ::I" also describe a linear manifold 5£" in a Hilbert space, for which the
(symmetric) scalar product becomes

«::I", ::I"» == f tr(T"E") dv = f tr{T"L-I [T"]} dv,
,,(B) ,,(B)

(2.11)

where L- 1 is the inverse of the elastic tensor.t We call 5£" the manifold of statically admissible
configurations.

The state ::I" may also be decomposed into the sum

::I" = ::I~ + fl", (2.12)

where ::I~ is the fixed element satisfying the non-homogeneous equilibrium equations in IC(B) and
the non-homogeneous boundary conditions on a21C(B), and fl" is a variable element satisfying
the corresponding homogeneous equations and boundary conditions.

It is easy to verify that 5£' and 5£" are orthogonal with respect to the scalar products (2.9) and
(2.11). In fact, applying the Gauss-Green formula to the two states fl' and flll, belonging
respectively to 5£' and 5£", we obtain

«(fl', flll» == f tr(T"E') dv = - f div Til. u' dv +J T"n' u' ds.
,,(B) ,,(B) .,,(B)

The right side vanishes, because, by hypothesis,

div Til == 0 in IC(B),

T"n =0 on a21C(B), and u' =0 on allC(B).

If ::I' and g)/' are allowed to vary in the manifolds 5£' and 5£", the solution of problem (2.5), which
is obviously the unique element of intersection of the two manifolds, may be regarded as the field
::I which is solution to the following minimum problem:

119" - 9'''112 = «9" - 9'", 9" - 9'''» = min

for any ::I' E 5£', ::I" E 5£".
Direct consequences of (2.13) intuitively obvious from Fig. 1, are the relations [6]

«9' - 9",9' - ::I"» = 0,

tL-, = K is also called compliance tensor (see Gurtin [8]).

(2.13)

(2.14)
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Fig. I.

(2.15)

Formulae (2.14) and (2.15) are crucial in the provision of a priori bounds for the solution of
problem (2.5), or, more precisely, for the bound on the norm 119'112 which is twice the energy of
deformation. In fact, they are equivalent to the single equation

(2.16)

which proves that the vector 9' lies on the sphere with centre ceo = 0/2)(9'/ + 9''') and radius
Ro = 0/2)11Y" - 9'''11· In other words, ::I satisfies the bounds

(2.17)

These bounding formulae undergo a radical simplification when the boundary datum is
homogeneous; in this case one of the two manifolds!£' or it" contains the origin. To fix our ideas,
let us consider, the case when it" contains the origin (Fig. 2). Then, if ::I' and ::I" are two
admissible states, the state K9''', with K constant, is also admissible.

Putting K = 0, and therefore 9''' = 0, in (2.17), we obtain directly the upper bound

(2.18)

Conversely, when we put K9''' for 9''' into the lower bound in (2.17), it becomes a function of K

which reaches its maximum for

«9", ::I"»
K = /19'''112 •

Thus, on substituting this value into the left hand side of (2.17), we obtain the lower bound

(2.19)

Fig. 2.
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The same argument applies (apart from the obvious transposition of !£' with :t") to the case when
!£' contains the origin.

From the bound for the energy we can calculate pointwise bounds for the elastic displacement
using the Green formula. We denote by 9'v[l](X) the Kelvin state corresponding to a load I
concentrated at the point Y.

We write[8]
9'y[l] E [Uy[l], Ey[I], Ty[I]]

to indicate the elastic state, defined as the limit of a sequence {pbm } of fields of body forces
tending to a concentrated load I in Y with the following properties:

(1) In K(B) - {V}, 9'y[l] corresponds to null body forces;
(2) Uy[l] = O(r- I

) and Ty[l] = 0(r-2
) when r (r = IX - YI) tends to zero or to infinity;

(3) for every sphere I", of radius T/ and center at Y, the equations

f Ty[l]n ds =I, f r x T,[I]n ds =0
a~~ a~~

hold, where aI" is the surface of I" ;
(4) for each vector v

I· Uy[v] = v'· UyU],

Ty[v]1 = Tnl]v,

where n is a uniquely defined stress field, called the adjoint field of Ty[8].
Now let us apply the Betti theorem to the region K(B) - I", conbining the solution of the

problem (2.5) with the Kelvin state. We write

f tr{Ty[l]E}dv = f tr{TEy[l]}dv,
..(B)-:E. ..(B)-1:.

and transform this expression by an integration by parts. We get easily

-f diVTy[l]'UdV+! Ty[l]n'uds- L Ty[l]n'uds
.. (B)-:E. a..(B) a1:.

= - f div T . Uy[l] dv +i Tn 'Uy[l] ds - i Tn· uy[I] ds,
K(B)-:I'fl d",(B) a:I'J)

whence, using the properties of the Kelvin state, and taking the limit as T/ --+ 0, we arrive at the
formula (of Somigliana)

u(Y) ·1 = f pb' Uy[l] dv +i (Tn' Uy[l] - Ty[l]n' u) ds.
..(B) a..(B)

(2.20)

Finally, applying the property (4) of the Kelvin state, we find that (2.20) is equivalent to the
following formula

u(Y) = f Uy[pb] dv + i (uy[Tn] - Tt[u]n) ds.
K(B) dIC(D)

(2.21)

In the right hand side of (2.21) some quantities are known and others unknown. Thus, we see that

uy = f Uy[pb] dv + f uy[Tn] ds - f n[u]n ds
.(B) 1a2.(8) Ja1.(B)

(2.22)
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is known, and is expressible in terms of the data of the problem. On the other hand, to evaluate
the unknown part in the right hand side of (2.21), we introduce two auxiliary elastic states

defined in the following way:
(1) u~ is a continuous field of displacement such that

u~(X) == uv(X) on oIK(B);

(2) T~ is a piecewise continuous stress field such that

div T~ == 0 in K(B), T~*n == nn on 02K(B);

(3)

f u~[Tn] ds == 0, f T~[u]n ds == O.
Jil2K{BJ JOlH(B)

Then, using these properties of the auxiliary fields, we are able to express (2.21) as

u(Y) == Uv + f u{[Tn] ds - f T~*[u]n ds.
JiJK1BJ JilK(B)

But, from the divergence theorem, we have

f uaTn] ds == J. tr(TE~) dv - J. u~[pb] dv,
dK(B) K(B) K(8)

f n*[u]n ds == J. tr(T~E) dv,
il~(B) K(H)

so that we may write (2.26) in the more classical way

u(Y) - Uv + J. u~[pb] dv == ((:f', [I~ - [I~».
K(B)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

We know how to bound the second member of (2.27), because, if Wis an arbitrary elastic state, by
the Cauchy-Schwarz inequality, we have

from which, on remembering (2.16), we obtain

I(([I - ~ (:f" + [I"), w))Is; ~ I/Y' - [lIIIIIIWII·

This means that

~ ((:f" + [I", W» - ~ I/Y' - [I"IIIIWII s; ((:f', W» s; ~ ((:f" + [I", W»

+f/19"- 9"'/i/lWII,

that is, introducing ~o and Ro, we can write

(2.28)

(2.29)
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Then (2.29) furnishes the sought bound for the second member of (2.27), after we put
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In a similar manner, on differentiating with respect to Y both members of (2.21) and choosing
suitable auxiliary states, we obtain bounds for the components of stress and deformation.

3. PROPERTIES OF SOLUTIONS OF THE NON-LINEAR PROBLEM

All results described in the previous section are well known[6]. We now propose extending
them to solutions of elastostatic problems subject to unilateral constraints.

More precisely, we shall consider problem (2.5) but for solutions subject to a constraint of the
type u E 91., where 91, is a convex subset of the Hilbert space, where the problem is formulated.
Then, if At is the linear manifold of functions such that u - uhave null trace on aIK(B), we call 91
the set of admissible functions defined by the relation

which is clearly convex with 91 1• Thus the problem with constraints is reduced to seeking a
function U9\ E 91, which is solution of the variational inequality

f tr{T9\fE' - Em)} dv ~ f pb . (u' - U9\) dv
K(B) K(B)

+ft. (u' - U9\) ds 'rIu' E 91.
az_(B)

(3.1)

It is known that a solution exists to problem (3.1) under the same hypotheses ensuring the
existence of solutions for the problem (2.1)[9, to). We wish to consider now the question of
bounding a priori the solutions.

We begin observing that, if 91 == At, the solution of the problem (3.1) coincides with the one for
the problem (2.5). If Y == [u, E, T] is this solution, it satisfies the equation

«Y, Y'» =f tr(TE') dv =f pb' u' dv + ( t· u' ds 'rIu' EAt. (3.2)
«(8) «(B) Ja21C(B)

This is the weak formulation of the problem (2.5). Then, denoting with Y9\ the elastic state
corresponding to the solution of the inequality (3.1), we can give this inequality the form

(3.3)

Once Y is known, the theory tells us that there exists a unique element Y9\ E 91 satisfying (3.3).
We will call (3.3) the variational inequality in the direct form. However, as Velte [7] has shown,

it is possible to formulate the problem in a reciprocal form, which is the natural extension of the
method of Friedrichs [1] for bilateral problems. In fact the following theorem (of Velte) holds:

Theorem 3.1 (Velte [7]). The solution Y9\ ofthe inequality (3.3) is also a solution ofthe inequality

where 91e is the set of all elements Y" satisfying the complementary inequality

«Y", Y' - Y'~) ~ «Y, Y' - Y"» 'rIY' E 91.

Proof. The variational inequality (3.3) is equivalent to the minimum problem

(3.4)

(3.5)

SS Vol. 13, No. 4--8

J(Y') =~ «Y' ,[I'» - «[I, [I'» =min for [I' E 91.
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But, since the bilinear form (2.9) is non-negative, we have

~ «9", Y /»? - ~«Y'" y"» +«Y', Y"» VY', y" E H'(K(B».

In particular, for any Y' E ffi and fI" E H1(K(B)), we may write

I(Y')? - ~ «Y", y")) +«Y', fI"» - «Y, y'»)

=1(Y") +{«Y", Y ' - Y"» - «Y, Y/ - Y"»}. (3.6)

We prove now that this inequality implies that, if Ylfl is the solution of (3.3), then fllfl = ffi n fit
and

min I(Y') =I(Ylfl) = max I(Y").
EI"EfIA S""E91 c

(3.7)

In fact, an element of H1(K(B» is solution of (3.3) if and only if it belongs to ffi n ffie> but, as (3.3)
has only one solution, it follows that Ylfl = ffi n ffi e • In addition, for any pair Y' E ffi and fI" Effie.
one has from (3.6) I(Y')? l(fI"). Since fI~}l E ffi n ffi e it follows that l(flJ)? l(fI~l'.) for any
Y' E ffi, and I(Ylfl)? I(Y") for any Y" Effie' Hence we have (3.7) or alternatively (3.3) and (3.4).

o
We observe explicitly that despite its formal resemblance, (3.5) has not a unique solution,

while (3.3) has one and only one solution. This is because the solutions Y" of (3.5) do not
necessarily lie in ffi.

From a knowledge of two arbitrary elements fI' E ffi and fI" E ~Rc we may easily derive a
two-sided estimate for the energy of Y:1t. Starting indeed from the identity

(3.8)

we may verify at once that the following inequalities hold for the right hand side of (3.5):

~ IIY' - Ylfl +Y" - Ylfl112 ::5 ~ (119" - Ylfl l12 +11ff" - 9'lflln

= ~ {II.'I' - y II I1 2
- 2«fI" - Y~lt, fI:lt - Y'))}.

From this, using (3.5), we derive

(3.9)

(3.10)

which is exactly (2.16), when Y' ranges over ffi and y" over fit. The geometric illustration of this
situation is shown in Fig. 3.

Once (3.8) has been provided, (2.17) and (2.28) follow as simple corollaries. On the contrary, it is

o
Fig. 3.
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not longer possible to derive inequalities of the type (2.19), because ffi and ffie are not linear
manifolds, so that for admissable [I" (or [I'), K[I" (or K[I') is not necessarily admissible.

Remark 3.1 If [I, the solution of the unconstrained problem, does not belong to 91, then it
belongs to ffie. This may be seen by taking [I" = (j in (3.5).

Once ffi and [I are known, this allows us to characterize geometrically ffie> as the locus of
vectors [I" such that [I" - [I makes an acute angle with [I' - [I".

Remark 3.2. The solution of the variational inequality (3.1) is equivalent, geometrically
speaking, to identify the element of minimal distance between the convex sets ffi and ffie.

4. LOCAL BOUNDS ON SOLUTIONS

We have seen how a knowledge of two complementary admissible states, enables the
deformation energy to be bounded. We now propose to find pointwise bounds for solutions as is
done in bilateral problems. In the present situation, we cannot directly employ the Kelvin state,
because the state [I is not a solution to equation (2.5) but to inequality (3.1). Therefore, the value
of div Tmin IC(B) and of Um or tmon alC(B) are unknown. As we have seen, these quantities are
essential for the determination of the function Uy defined by (2.22).

In any case, we can still apply Betti's theorem to the region IC(B) - I", combining the Kelvin
state with the solution of (3.1). We write

f tr{Ty[l]Em}dv = f. tr{TmEy[l]}dv,
,,(B)-1:. ,,(B)-:t.

and integrate the first member by parts. We obtain

f Ty[l]n . Um ds -] Ty[l]n . Um ds - f. div Ty[l] . Um dv
DI(B) a:I.Tl K(B)-:I.T)

= f tr{TmEv[l]} dv.
,,(B)-1:.

From here, taking the limit as 1/ ~ 0, we arrive at the equation

U(Y) . I =-] Ty[I]n . U91 ds + f. tr{TmEv[I]} dv,
t'Jte(B) ..(B)

which is equivalent to

U(Y) = -] Tnu91]n ds + f. tr(TmEv) dv.
aK(B) IC(B)

We introduce now an auxiliary field

[I~= [u~, E~, n],

with the properties that

(4.1)

(4.2)

(4.3)

(1)

(2)

Thus (4.3) becomes

which may be rewritten as

div T~ = 0 in IC(B),
T~[I]n = Ty[l] on alC(B).

U(Y) = f. tr(T91Ey - T~E91) dv,
K(b)

U(Y) = «[1m, [Iv - [Iv")). (4.4)
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At this point we can apply the same argument used to obtain (2.29). In fact, if CfJ is an arbitrary
state, by the Cauchy-Schwarz inequality, we have

whence, remembering (3.8), we derive

(4.5)

This implies that

I I I2((9" + f:f", CfJ» - 2W' - f:f"11 IICfJII:5 ((f:fm, CfJ»:5 2((f:f' + f:f", CfJ»

+~ W' - f:f"11 IICfJII,

which, putting ceo = (l/2)(f:f' + f:f") and Ro = (l/2)IIf:f' - f:f"II, becomes

(4.6)

Finally, on choosing

we obtain the required bound for the displacement at any point of K(B).
Formulae (3.8) and (4.6) are the main result in the extension of the method of two-sided

estimates for the solutions of variational inequalities. In despite of the formal analogy with (2.16)
and (2.29), their application in particular examples is not immediate because it requires the
construction of two admissible states fI' and fI", with fI" depending on !Re , which is not known a
priori. The construction of !Re involves a knowledge of the solution f:f of the linear unconstrained
problem.

We wish next to examine in detail the application of our method to the two important
problems of the elastic membrane on an obstacle, studied by Lewy and Stampacchia[lO], and the
Signorini problem of the elastic body on a smooth support, treated, for instance, by Fichera[ll].

5. MEMBRANE STRETCHED OVER AN OBSTACLE

Let!l be a bounded region of the plane and E a subset of !l contained in the inside of !l. On E
a certain function l/J is defined and we want to determine the equilibrium configuration of an
elastic membrane encastred along a!l, the boundary of !l, and such that the displacement,
perpendicular to !l, is always greater than or equal to l/J (Fig. 4).

We introduce the Hilbert space J.l = Ho'(!l), defined as the completion with respect the norm

of the space ceol(!l) of continuously differentiable functions with compact support in!l. The set

!R={v EHo'(!l): v(x,y):2:l/J(x,Y) for (x,y)EE} (5.l)

is a convex subset of HoI(!l).
It is well known [9] that the deformation u is the solution to the variational inequality

In Vu·V(v-u)dxdy:2:0 '>Iv E !R. (5.2)
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u

Fig. 4.
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Condition under which a solution of (5.2) exists are well known. We seek upper and lower bounds
for the deformation strain energy, or more precisely, for the functional

(5.3)

where fffJl denotes the elastic state corresponding to the solution of (5.2). We observe moreover
that for l/J == 0 (that is, when the obstacle is absent) the solution of the problem is u == 0 in O. This
means that in the unconstrained problem the corresponding elastic state is Y = O.

Any kinematically admissible state ff' is determined from any u' E H01(O) such that
u'(x, y) 'd?l/J(x, y) in E.

In order to construct a statically admissible state ff", we consider the set ffi e of states ff" such
that

«Y", ff' - ff"» 'd? 0 'tiff' E ffi. (5.4)

This inequality is obtained from (3.5), upon putting ff = O.1f u" is the deformation corresponding
to ff" and p" = '\lu" is its gradient, we may write (5.4) in the form

Lp"·'\lu'dxdy'd?Lp"'p"dxdy 'tIu'Effi.

On integrating by parts in the left-hand term and remembering that u' E H01(n), we obtain

-Ldivp"u'dxdy'd? Lp"'p"dxdy 't/u'Effi. (5.5)

We now choose p" such that div p" ~ 0 in n. Then (5.5) is satisfied a fortiori provided p" satisfies
the inequality

-Ldiv p" max (0, l/J) dx dy 'd?Lp". p" dx dy. (5.6)

For instance, on taking p" == (-ax, -ay), with a a positive constant, we see that (5.6) easily
becomes

where I" is the polar moment of n with respect the origin of the coordinates. Therefore any a
such that

a$;;" Lmax (0, l/J) dx dy (5.7)

allows us to completely define p" and hence ff". We can now apply (3.8) to obtain bound for IWfJl112
•

To get pointwise bounds, we denote by x.. Yl the coordinates of the given point. As it is known,
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represents a fundamental solution for the Laplace equation. Let Yy be the associated elastic state
and let us introduce an auxiliary state Y~" defined by the vector p~ where

div p~ = 0 in n,

" V" la(l) npY'n= Uy'n=-- nr on au.
2rr an

Thus, applying (4.4) directly, we can write

U(X., Y.) = «Yrn,:Jy - Y~»

= fa VU!Jl' (2~ Vlnr-p~)dxdY, (5.8)

whence we arrive easily at (4.6).
Example 5.1. Let n be a circle of radius Rand E a concentric circle of radius (1/2)R. In E, a

function 1/1 is defined which is supposed to be continuous and strictly positive (Fig. 5). We denote
by M and m the maximum and minimum values (both positive) of 1/1. In this case, referred to
polar coordinates whit origin at the centre of n, the functions u' assumes the form:

'() { M for O:s r :s (l/2)R,
U r = 2M(l- (r/R» for (l/2)R:s r:S R,

1
M

L

which clearly defines a kinematically admissible state. On the other hand, on choosing
p"=(-ax,-ay), where

2 m
a = I

p
m meas E = R 2 '

we automatically satisfy (5.7) hand so have a complementary admissible state.
Finally, if we want to bound the deformation in the centre of n, we must construct a vector P~

such that
div p:; = 0 in n,

I [a ] Ip:;'n=- -(lnr) =--.
2rr ar r-R 2rrR

We easily see [6] that

satisfies the required conditions, and hence may be used in (5.8) and (4.6).
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6. THE PROBLEM OF THE ELASTIC BODY SUPPORTED BY
A SMOOTH PLANE

Let K(B) be the reference configuration of an elastic body loaded in the following way (Fig.
6): the boundary QK(B) consists of a part 02K(B) on which surface tractions are assigned,
together with its complement otK(B) which is in contact with a smooth rigid support, preventing
any displacement in the normal direction.t

We assume a system of cartesian coordinates with origin taken at a point in the supporting
plane, and with the X3-axis along the outer normal, and the X 1X 2-axes placed in this plane.

The solutions of the problem are then constrained by the condition

U3 u· n ~ 0 on o,K(B). (6.1)

We seek the solutions in the Hilbert space H1(K(B» defined as the completion of functions
Ct(K(B» with respect the norm

IluW = f [u . u+ tr(VuVuT)J dv.
,,(B)

(6.2)

On discarding all rigid motions compatible with the constraints, we see that the norm (6.2) is
equivalent to the norm defined on the deformation energy, given by

The set

119'112
= f tr(TE) dv.

I«B)

(6.3)

(6.4)

is a closed convex subset of Ht(K(B».

The Signorini problem is therefore reduced to the determination of a vector Um E !Jt such that

f tr{TgJE' - Em)} dv ~ { i· (u' - Um) ds Vu' Em.
I«B) J8,I«B)

(6.5)

To find bounds on the energy and on the solution at a point we must construct the admissible
states entering into (3.8) and (4.6).

A kinematically admissible state u' is, for instance, defined by the displacement field

(6.6)

where a is a positive constant, small enough compared to unity for the hypotheses of the
classical theory to apply.

On the other hand, for the state fill, we observe that it must belong to the convex set me
defined by (3.5). In our case this inequality becomes

f tr{r(E' - E")} dv ~f tr{T(E' - E'')} dv Vu' Em,
,,(B) I«B)

Fig. 6.

(6.7)

tOf course many variants and generalizations of this problem are possible (cf. for instance Duvaut and Lions [12]).
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where T is the stress field in the (linear) problem associated which tractions t on JzK(B) and
displacements U3 = 0 on J1K(B). The strain energy corresponding to T may be bounded using
classical methods.

If we require Til to satisfy the static conditions:

div Til = 0 In K(B),

T"n = t on JzK(B),

T"s = 0 on J1K(B),

where s is a generic unit vector in the plane X 3 =0, then, by applying the Gauss-Green formula to
(6.7) and remembering that E' = (I/2)(Vu' +VU'T), we get

f tr(TIE") dv :sf tr(TE") dv.
",(B) ",(B)

(6.8)

Thus, (6.8) is a further restriction on Til in order that ::I" belongs to 9L We can also write (6.8) in
the form

IW"llz = «(::til, g"')) :s «(::t, ::I")), (6.9)

which shows that it is not necessary to determine::l to ensure that ::I" satisfies (6.9). It suffices to
use (2.29) with If9'" II less than the lower bound of «::I, ::I")) given by (2.29).

Pointwise bounds for the solution may be calculated with the help of formula (4.4). For this, we
must construct an auxiliary state g~ satisfying conditions (I) and (2) given in Section 4. The
construction of this auxiliary function requires the same operations as in the linear problems.

7. CONCLUSIONS

The method of two-sided bounds for the energy of solutions of variational inequalities
consists essentially of three steps:

(I) To define two convex subsets of the function space, in which the problem is formulated in
such a way that the solution is the only common element.

(2) To construct two admissible states, each belonging to one of the two subspaces.
(3) To find an auxiliary state, which, with the help of a fundamental solution and Betti's

theorem, produces pointwise bounds.
These operations are formally similar to those used in bounding the solutions to the linear

boundary value problems. Now however, the two orthogonal subspaces are replaced by two
complementary convex subsets.
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